Logo der Universität Wien

Physical Chemistry and Nanotechnology of Interfaces

(Department of Physical Chemistry, Working Group Prof. Kautek)

  • Ultrafast phenomena and nanoscale structures in the area of interfacial research
  • fs-Laser-Nanostrukturierung 
  • In-situ-fs-Laser-Nanostrukturierung im a-SNOM 
  • In-situ-fs-Mikroskopie im aperturfreien Nahfeld einer Rastersonde (a-SNOM)
  • Bioelektrochemie: Proteine, Selbstorganisation 
  • Multiphotonen 3D-Mikroskopie 
  • Single Molecule Spektroskopie im elektrochemischen Multiphotonen 3D-Mikroskop 
  • fs-Laseranregung der Selbstorganisation von biologischen, organischen und anorganischen Festkörperoberflächen im Nanoskalenbereich 
  • Femto-Elektrochemie heißer Elektronen (Pikosekunden-Strompulse) 
  • Laser-Reinigung von Kunstwerken und Dokumenten (Papier, Pergament, Textilien) 
  • fs-Laser-Medizin: Ophthalmologie 

The activity of “Physical Chemistry and Nanotechnology of Interfaces" relies on pioneering work for more than 15 years in demonstrating femtosecond machining down to the nanscale of a broad variety of materials soon after fs-laser got available in the early nineties. Experience exists in top-down femtosecond laser ablation allowing micro- and nanomachining of 1D, 2D, and 3D structures in metals, transparent solids and biological tissues that cannot be made any other way. A special advantage is the unique possibility of congruent machining of highly inhomogeneous composite materials. Pulse durations (<80 fs) far below the electron-phonon relaxation time in solids (>1 fs) provide the unique possibility to deterministically excite the electronic system by multi photon excitation resulting in unique precision in contrast to "conventional" fs-laser applications (>100 fs) where stochastic avalanche processes result in poor ablation qualities.


Comparison between amplified laser system (CPA) and high energy oscillators concerning repetition rate and output energy.

A novel optical setup coupling sub-60 fs-pulses into a high precision microscope will allow ultrahigh-precision processing. fs-pulses are necessary to avoid large heat affected zones (> 1µm) common with conventional ns-pulse lasers. Such non-linear phenomena can be exploited to reach supercritical intensities only in the focus of transparent bulk materials enabling laser direct-writing of 3D devices containing optical and microfluidic networks. This new approach to set up nano and microstructures can be applied to almost any transparent composite and functional material. 

It was recently demonstrated that fs-laser-induced self assembly of nanostructures on solids opens a new approach to nano-structure surfaces bottom-up 
Fs-Laser ablation of solids in liquid contact can be a process for synthesizing nanoparticles and nanotubes/nanorods Thus uniformly small particles precipitate in solution. Fs-Pulsed laser deposition can serve to transfer delicate polymeric and biopolymeric materials to any substrate (fs-Laser Induced Forward Transfer, fs-LIFT) as a microprinting process avoiding thermal damage in sharp contrast to conventional nanosecond technology in LIFT.
Electrochemical scanning force microscopy allows to investigate the molecular structure of double layers and nanomanipulate electrified interfaces.
Biolectrochemistry could be demonstrated on crystalline single layer proteins on electrodes in a longterm collaboration with the Vienna University of Natural Resources and Applied Life Sciences (BOKU)

Institut für Physikalische Chemie
Universität Wien

Währinger Straße 42
1090 Wien
T: +43-1-4277-524 01
F: +43-1-4277-524 97
University of Vienna | Universitätsring 1 | 1010 Vienna | T +43-1-4277-0